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Overview

It is sometimes possible to relate questions about integral module

structure in a Galois extension of local or global fields to analogous

questions about subextensions.

In this talk we generalize these ideas to Hopf-Galois extensions.

Normality in Galois extensions via group algebras.

Normality in separable Hopf-Galois extensions of fields.

Two useful lemmas in Galois module theory.

Hopf-Galois generalizations of these, and applications.
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Normality in Galois extensions via group algebras

Let L/K be a Galois extension of fields with group G .

L/K is Hopf-Galois for K [G ].

We can characterize fixed fields via Hopf subalgebras:

The Hopf subalgebras of K [G ] are K [J], with J a

subgroup of G , and

LJ = {x ∈ L | γ(x) = x for all γ ∈ J}

= {x ∈ L | z · x = ε(z)x for all z ∈ K [J]}

= LK [J], say.

L/LJ is Hopf-Galois for LJ ⊗K K [J].
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Normality in Galois extensions via group algebras

If J is a normal subgroup of G then LJ/K is a Galois

extension with Galois group G/J.

In this case LJ/K is Hopf-Galois for K [G/J].

Idea

Investigate analogous questions for Hopf-Galois

structures on separable extensions of fields.
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The Greither-Pareigis classification

Theorem (Greither and Pareigis, 1987)

Let L/K be a separable extension of fields with Galois

closure E .

Let G = Gal(E/K ), G ′ = Gal(E/L), X = G/G ′.

Define λ : G → Perm(X ) by λ(σ)[τG ′] = στG ′.

Let G act on Perm(X ) by ση = λ(σ)ηλ(σ)−1.

Then

There is a bijection between G -stable regular

subgroups of Perm(X ) and Hopf-Galois structures

on L/K ;

the Hopf algebra giving the Hopf-Galois structure

corresponding to N is E [N]G .
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Hopf subalgebras and fixed fields

Let L/K be separable and Hopf-Galois for E [N]G .

The Hopf subalgebras of E [N]G are E [P]G with P a

G -stable subgroup of N.

Each Hopf subalgebra has a corresponding fixed field:

LP = {x ∈ L | z · x = ε(z)x for all z ∈ E [P]G}.

L/LP is Hopf-Galois for LP ⊗K E [P]G .

Example

If L/K is Galois with group G then K [G ] corresponds to

ρ(G ) ⊂ Perm(G ). The action of G on ρ(G ) is trivial, so

every subgroup of ρ(G ) is G -stable. We recover the

situation considered earlier.

L
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K

Paul Truman Quotient Hopf-Galois Structures 6 / 20



Normality and quotient Hopf-Galois structures

Theorem (Koch, Kohl, T, Underwood, 2019)

Suppose that L/K is a Galois extension of fields that is

Hopf-Galois for L[N]G , and that P is a normal G -stable

subgroup of N.

Then LP/K is Hopf-Galois for L[N/P]G .

Important to note that LP/K might not be Galois.
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Normality and quotient Hopf-Galois structures

Example

Let L be the splitting field of x3 − 2 over Q.

L/Q is Galois with Galois group G ∼= D3.

Perm(G ) contains G -stable regular subgroups that

are isomorphic to C6. Let N be one.

L/Q is Hopf-Galois for L[N]G .

N has a unique subgroup P of order 2.

P is normal and G -stable.

By the theorem, LP/Q is Hopf-Galois for L[N/P]G .

But LP/Q is not Galois.
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A slight generalization

Theorem

Suppose that L/K is a separable extension of fields that

is Hopf-Galois for E [N]G , and that P is a normal

G -stable subgroup of N.

Then LP/K is Hopf-Galois for E [N/P]G .

Remainder of the talk is about the application of these

ideas to questions of integral module structure.

Henceforth, suppose that L/K is an extension of number

fields or p-adic fields.
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A useful lemma in Galois module theory

Suppose that L/K is Galois with group G , and J / G .

Write F = LJ , and let

π : K [G ] � K [G/J] be the algebra homomorphism

induced by the natural map G � G/J;

AL/K be the associated order of OL in K [G ];

AF/K be the associated order of OF in K [G/J].

Lemma (Byott and Lettl, 1996)

Suppose that OL = AL/K · α and that L/F is (at most)

tamely ramified. Then

AF/K = π(AL/K );

OF = AF/K · TrL/F (α).
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A Hopf-Galois version

Suppose that L/K is separable and Hopf-Galois for

E [N]G , and that P / N is G -stable.

Write F = LP , and let

AL/K be the associated order of OL in E [N]G ;

AF/K be the associated order of OF in E [N/P]G .

Lemma

The E -algebra homomorphism π : E [N] � E [N/P]

induced by the natural map N � N/P descends to a

K -algebra homomorphism π : E [N]G � E [N/P]G
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A Hopf-Galois version

Recall

F = LP ;

AL/K is the associated order of OL in E [N]G ;

AF/K is the associated order of OF in E [N/P]G .

Lemma

Suppose that OL = AL/K · α and that L/F is tamely

ramified. Then

AF/K = π(AL/K );

OF = AF/K · TrL/F (α).
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An application

Theorem (Taylor)

Let L/Q be a tamely ramified Galois extension with

group G ∼= Q8, and suppose that L/Q is Hopf-Galois for

L[N]G with N cyclic.

Then OL is locally free, but not free, over AL/Q.

Proof.

Local freeness is already known.

N has a unique subgroup P of order 2.

P is normal and G -stable.

F = LP is a real biquadratic extension of Q.

N/P is cyclic, and K/Q is Hopf-Galois for L[N/P]G .
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An application

Proof Continued...

There are three HGS on F/Q for which the

underlying N is cyclic.

They correspond to the three quadratic subfields.

OF is free over its associated order in a HGS only if

the corresponding quadratic subfield is imaginary.

Therefore OF is not free over its associated order in

L[N/P]G .

By the lemma, OL is not free over AL/Q.
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Another useful lemma in Galois module theory

Lemma (Byott and Lettl, 1996)

Suppose that L/K is Galois with group G = H × J.

Then LH/K and LJ/K are linearly disjoint, and

L = LHLJ . Suppose in addition that

d(LH/K ) and d(LJ/K ) are coprime;

OLH = ALH/K · α;

OLJ = ALJ/K · β.

Then OL = AL/K · αβ.
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A Hopf-Galois version

Lemma

Suppose that L/K is separable and Hopf-Galois for

E [N]G , and that N = M × P for G -stable subgroups

M,P of N. Then

LM/K and LP/K are linearly disjoint;

LP/K is Hopf-Galois for E [M]G ;

LM/K is Hopf-Galois for E [P]G .

Continued...
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A Hopf-Galois version

Lemma (Continued)

Suppose in addition that

d(LM/K ) and d(LP/K ) are coprime;

OLM = ALM/K · α;

OLP = ALP/K · β.

Then OL = AL/K · αβ.
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An application

Theorem

Let L/K be a tame separable extension of p-adic fields

which is Hopf-Galois for E [N]G , with N abelian.

Then OL is a free AL/K -module.

Proof.

Write N = M × P with |M| = m, |P| = pr , and

p - m.

M,P are normal and G -stable.

LP/K is Hopf-Galois for E [M]G .

LM/K is Hopf-Galois for E [P]G .
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An application

Proof Continued..

LM/K is unramified, so OLM is free over ALM/K .

The degree of LP/K is prime to p, so OLP is free

over ALP/K .

d(LM/K ) and d(LP/K ) are coprime.

By the lemma, OL is free over AL/K .
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Thank you for your attention.
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